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Cyclopentadienyl-based ligands, and the pentamethylcyclopentadi-
enyl ligand in particular, have been enormously successful at supporting
novel reactivity patterns in actinide chemistry.1 In recent years a
number of groups have investigated the use of nonmetallocene ligands
with uranium(III/IV) chemistry and novel and diverse reactivity profiles
have emerged.2

Recently, we have investigated the capacity of the TrenTMS ligand
{N(CH2CH2NSiMe3)3} to support novel uranium(IV)-metal bonds.
We have reported the syntheses of [(TrenTMS)U(X)(THF)] (X ) Cl,
1;3 X ) I, 24) and demonstrated their utility in the preparation of the
first structurally authenticated uranium-gallium3 and -rhenium
bonds.4 However, in preliminary reactions with some transition metal
anions, we have noted that KX elimination is not straightforward, and
thermolysis is required.

We targeted [(TrenTMS)U(THF)2][BPh4] (3) as a precursor since we
reasoned the BPh4

- anion would be more labile than coordinated
halides, and KBPh4 elimination is a proven synthetic method in
f-element chemistry.5 Since KBPh4 does not react with 1 or 2 in THF,
we anticipated that treatment of 2 with KCH2C6H5 would give the
metallocycle [U{N(CH2CH2NSiMe3)2(CH2CH2NSiMe2CH2)}(THF)]
(4)6 which would undergo protonolysis with Et3NHBPh4 to afford 3.
Herein, we show that this superficially straightforward chemistry is
far more complex, as evidenced by the unprecedented formation of a
dinuclear tuck-in-tuck-over tuck-over dialkyl Tren-uranium(IV) com-
plex, and the first example of double dearylation of BPh4

- in a
molecular context to give a BPh2-functionalized metallocycle.

Reaction of 2 with KCH2C6H5 proceeds cleanly in toluene to repro-
ducibly give complex 5, Scheme 1, isolated as yellow crystals from hexane
in 54% crystalline yield. A variable-temperature 1H NMR study and X-ray
crystallography enabled us to conclusively identify 5 as a dinuclear tuck-
in-tuck-over tuck-over dialkyl,7 which is further supported by FTIR and
CHN data.8 Monitoring the reaction by 1H NMR spectroscopy showed
the smooth conversion of 2 to 5 with concomitant formation of toluene

within minutes. Intermediates were not observed, suggesting the decom-
position of the putative benzyl derivative of 2 to 4 and the H+ transfer/
dimerization to form 5 are rapid.9

The molecular structure of 5 is illustrated in Figure 1 with selected
bond lengths. The U(2)-Tren ligand is coordinated normally, except
for the bridging N(6) center. Bridging Tren amides are known but
usually result from alkali metal occlusion.10 However, the coordination
of the U(1)-Tren ligand is unprecedented. In addition to the three
anionic amides, two trimethylsilyl groups are metalated. The C(1)
center bridges U(1) and U(2) in a tuck-in-tuck-over coordination mode,
with essentially identical U-C bond distances of 2.667(5) and 2.669(5)
Å. In contrast, terminal C(6) binds in a tuck-over manner with a
significantly shorter C(6)-U(2) bond length of 2.493(5) Å. The U-C
bond distances compare well to the small number of related metallocyclic
uranium(IV)-alkyls.6b,c The U-Namide and -Namine bond distances are
typical of U(IV)-N bond lengths11 and are commensurate with their
binding modes.

Treatment of 5 with 2 equiv of Et3NHBPh4 does not give 3. Instead,
the tuck-in metallocycle 6 was isolated as pale green crystals in 52%
crystalline yield, Scheme 1, and the characterization data support its
formulation.8

The molecular structure of 6 is depicted in Figure 2 with selected
bond lengths. The U(1)-C(1) bond distance of 2.644(9) Å compares
well to 5 and related metallocyclic uranium(IV)-alkyls.6 The
U-Namido and U-Namine bond lengths of 2.244(6) (av.) and 2.573(6)
Å are typical of U(IV)-N bond distances.11 The U(1)-N(1) bond
is short at 2.193(6) Å, and the bite angle of the tuck-in arm is acute
at 68.7(2)° [cf. 86.41(17)° in 5]. The boron center is trigonal planar
[Σ∠ ) 360°] and the B(1)-C(1) distance of 1.493(11) Å is short,
suggesting B-C multiple bond character. For comparison, average
B-CH2 and B-CPh bond lengths of 1.444 and 1.576 Å were
reported for [Mes2BCH2][Li(12-crown-4)2]

12 and BPh3.
13 To further

Scheme 1. Synthesis of 5 and 6

Figure 1. Molecular structure of 5. Thermal ellipsoids set at 30% probability;
hydrogen atoms omitted for clarity. Selected bond lengths (Å): U(1)-N(1) 2.239(3),
U(1)-N(2) 2.257(3), U(1)-N(3) 2.292(3), U(1)-N(4) 2.677(3), U(1)-N(6)
2.738(3), U(1)-C(1) 2.667(5), U(2)-N(5) 2.296(4), U(2)-N(6) 2.381(3), U(2)-N(7)
2.267(3), U(2)-N(8) 2.616(3), U(2)-C(1) 2.669(4), U(2)-C(6) 2.493(5).
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validate 6 and probe the B(1)-C(1) bond we carried out DFT
calculations on a full model of 6.8 The calculation reproduced the
metrical parameters and inspection of the Kohn-Sham orbitals,
and Mayer bond orders (B-C ) 1.33) confirm the manifestation
of a B(1)-C(1) π-bond perturbed by the polarizing uranium center.

To shed light on the formation of 6, we analyzed the reaction mother
liquor using GC-MS, which revealed the presence of benzene and
biphenyl.8 Thus, the overall reaction can be represented by eq 1.
Monitoring the reaction by variable temperature 1H NMR spectroscopy
showed conversion of 5 to 6, and no intermediates were observed.8,14

The stoichiometry of eq 1 suggests that eqs 2-515 should be considered
(S ) solvent): (i) formation of BPh2

+, eq 2, appears unlikely but could
be facilitated by a redox active uranium center, and this would account
for the generation of Ph2 and BPh2; (ii) eq 3 is known for BPh4

- and
accounts for the formation of Ph2;

16 (iii) attack of BPh3 by a carbanion
center with extrusion of Ph- (or PhH) seems unlikely on steric grounds,
but this cannot be ruled out;17 (iv) formation of C6H6 may be accounted
for with eq 4, point (iii), or direct extrusion of Ph- from BPh4

- which
then abstracts H+ from Et3NH+ or the cyclometalated arm in an
acid-base reaction;18 (v) previous electrochemical studies have dem-
onstrated that eq 5 is viable,15 which would sustain eqs 3 and 4, generate
a BPh2

+ of sufficient reactivity to allow nucleophilic attack by a carbanion
center, and regenerate BPh4

- which is a potential source of Ph-.
The formation of 6 is remarkable and is, as far as we are aware,

the first example of double dearylation of BPh4
- in a molecular

context.15 The reason why the use of BPh4
- as a counteranion is

avoided in homogeneous catalysis is open to debate. It is usually
assumed that BPh4

- can block incoming substrates by weak
coordination.19 The BPh4

- anion can also become metalated.20

Monodearylation of BPh4
- (eq 3) has been recognized as another

potentially detrimental role for BPh4
-.16 The double dearylation

reactivity of BPh4
- described here adds to the growing list of

possible reactions that should be contemplated when using BPh4
-.

To conclude, the unprecedented dinuclear tuck-in-tuck-over tuck-
over dialkyl Tren-uranium(IV) complex 5 extends the palate of
novel chemistry which may be achieved with uranium and
nonmetallocene ligands, and the BPh2-functionalized complex 6
reveals a new double dearylation reaction for the BPh4

- anion.
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Figure 2. Molecular structure of 6. Thermal ellipsoids set at 30%
probability; hydrogen atoms omitted for clarity. Selected bond lengths (Å):
U(1)-N(1) 2.193(6), U(1)-N(2) 2.262(6), U(1)-N(3) 2.277(6), U(1)-N(4)
2.573(6), U(1)-C(1) 2.644(9), U(1)-O(1) 2.565(5), B(1)-C(1) 1.493(11),
B(1)-C(16) 1.596(11), B(1)-C(22) 1.591(12).
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